examples/mixed_hmm/model.py (132 lines of code) (raw):

# Copyright (c) 2017-2019 Uber Technologies, Inc. # SPDX-License-Identifier: Apache-2.0 import torch from torch.distributions import constraints import pyro import pyro.distributions as dist from pyro import poutine from pyro.infer import config_enumerate from pyro.ops.indexing import Vindex def guide_generic(config): """generic mean-field guide for continuous random effects""" N_state = config["sizes"]["state"] if config["group"]["random"] == "continuous": loc_g = pyro.param("loc_group", lambda: torch.zeros((N_state ** 2,))) scale_g = pyro.param("scale_group", lambda: torch.ones((N_state ** 2,)), constraint=constraints.positive) # initialize individual-level random effect parameters N_c = config["sizes"]["group"] if config["individual"]["random"] == "continuous": loc_i = pyro.param("loc_individual", lambda: torch.zeros((N_c, N_state ** 2,))) scale_i = pyro.param("scale_individual", lambda: torch.ones((N_c, N_state ** 2,)), constraint=constraints.positive) N_c = config["sizes"]["group"] with pyro.plate("group", N_c, dim=-1): if config["group"]["random"] == "continuous": pyro.sample("eps_g", dist.Normal(loc_g, scale_g).to_event(1), ) # infer={"num_samples": 10}) N_s = config["sizes"]["individual"] with pyro.plate("individual", N_s, dim=-2), poutine.mask(mask=config["individual"]["mask"]): # individual-level random effects if config["individual"]["random"] == "continuous": pyro.sample("eps_i", dist.Normal(loc_i, scale_i).to_event(1), ) # infer={"num_samples": 10}) @config_enumerate def model_generic(config): """Hierarchical mixed-effects hidden markov model""" MISSING = config["MISSING"] N_v = config["sizes"]["random"] N_state = config["sizes"]["state"] # initialize group-level random effect parameterss if config["group"]["random"] == "discrete": probs_e_g = pyro.param("probs_e_group", lambda: torch.randn((N_v,)).abs(), constraint=constraints.simplex) theta_g = pyro.param("theta_group", lambda: torch.randn((N_v, N_state ** 2))) elif config["group"]["random"] == "continuous": loc_g = torch.zeros((N_state ** 2,)) scale_g = torch.ones((N_state ** 2,)) # initialize individual-level random effect parameters N_c = config["sizes"]["group"] if config["individual"]["random"] == "discrete": probs_e_i = pyro.param("probs_e_individual", lambda: torch.randn((N_c, N_v,)).abs(), constraint=constraints.simplex) theta_i = pyro.param("theta_individual", lambda: torch.randn((N_c, N_v, N_state ** 2))) elif config["individual"]["random"] == "continuous": loc_i = torch.zeros((N_c, N_state ** 2,)) scale_i = torch.ones((N_c, N_state ** 2,)) # initialize likelihood parameters # observation 1: step size (step ~ Gamma) step_zi_param = pyro.param("step_zi_param", lambda: torch.ones((N_state, 2))) step_concentration = pyro.param("step_param_concentration", lambda: torch.randn((N_state,)).abs(), constraint=constraints.positive) step_rate = pyro.param("step_param_rate", lambda: torch.randn((N_state,)).abs(), constraint=constraints.positive) # observation 2: step angle (angle ~ VonMises) angle_concentration = pyro.param("angle_param_concentration", lambda: torch.randn((N_state,)).abs(), constraint=constraints.positive) angle_loc = pyro.param("angle_param_loc", lambda: torch.randn((N_state,)).abs()) # observation 3: dive activity (omega ~ Beta) omega_zi_param = pyro.param("omega_zi_param", lambda: torch.ones((N_state, 2))) omega_concentration0 = pyro.param("omega_param_concentration0", lambda: torch.randn((N_state,)).abs(), constraint=constraints.positive) omega_concentration1 = pyro.param("omega_param_concentration1", lambda: torch.randn((N_state,)).abs(), constraint=constraints.positive) # initialize gamma to uniform gamma = torch.zeros((N_state ** 2,)) N_c = config["sizes"]["group"] with pyro.plate("group", N_c, dim=-1): # group-level random effects if config["group"]["random"] == "discrete": # group-level discrete effect e_g = pyro.sample("e_g", dist.Categorical(probs_e_g)) eps_g = Vindex(theta_g)[..., e_g, :] elif config["group"]["random"] == "continuous": eps_g = pyro.sample("eps_g", dist.Normal(loc_g, scale_g).to_event(1), ) # infer={"num_samples": 10}) else: eps_g = 0. # add group-level random effect to gamma gamma = gamma + eps_g N_s = config["sizes"]["individual"] with pyro.plate("individual", N_s, dim=-2), poutine.mask(mask=config["individual"]["mask"]): # individual-level random effects if config["individual"]["random"] == "discrete": # individual-level discrete effect e_i = pyro.sample("e_i", dist.Categorical(probs_e_i)) eps_i = Vindex(theta_i)[..., e_i, :] # assert eps_i.shape[-3:] == (1, N_c, N_state ** 2) and eps_i.shape[0] == N_v elif config["individual"]["random"] == "continuous": eps_i = pyro.sample("eps_i", dist.Normal(loc_i, scale_i).to_event(1), ) # infer={"num_samples": 10}) else: eps_i = 0. # add individual-level random effect to gamma gamma = gamma + eps_i y = torch.tensor(0).long() N_t = config["sizes"]["timesteps"] for t in pyro.markov(range(N_t)): with poutine.mask(mask=config["timestep"]["mask"][..., t]): gamma_t = gamma # per-timestep variable # finally, reshape gamma as batch of transition matrices gamma_t = gamma_t.reshape(tuple(gamma_t.shape[:-1]) + (N_state, N_state)) # we've accounted for all effects, now actually compute gamma_y gamma_y = Vindex(gamma_t)[..., y, :] y = pyro.sample("y_{}".format(t), dist.Categorical(logits=gamma_y)) # observation 1: step size step_dist = dist.Gamma( concentration=Vindex(step_concentration)[..., y], rate=Vindex(step_rate)[..., y] ) # zero-inflation with MaskedMixture step_zi = Vindex(step_zi_param)[..., y, :] step_zi_mask = pyro.sample("step_zi_{}".format(t), dist.Categorical(logits=step_zi), obs=(config["observations"]["step"][..., t] == MISSING)) step_zi_zero_dist = dist.Delta(v=torch.tensor(MISSING)) step_zi_dist = dist.MaskedMixture(step_zi_mask, step_dist, step_zi_zero_dist) pyro.sample("step_{}".format(t), step_zi_dist, obs=config["observations"]["step"][..., t]) # observation 2: step angle angle_dist = dist.VonMises( concentration=Vindex(angle_concentration)[..., y], loc=Vindex(angle_loc)[..., y] ) pyro.sample("angle_{}".format(t), angle_dist, obs=config["observations"]["angle"][..., t]) # observation 3: dive activity omega_dist = dist.Beta( concentration0=Vindex(omega_concentration0)[..., y], concentration1=Vindex(omega_concentration1)[..., y] ) # zero-inflation with MaskedMixture omega_zi = Vindex(omega_zi_param)[..., y, :] omega_zi_mask = pyro.sample( "omega_zi_{}".format(t), dist.Categorical(logits=omega_zi), obs=(config["observations"]["omega"][..., t] == MISSING)) omega_zi_zero_dist = dist.Delta(v=torch.tensor(MISSING)) omega_zi_dist = dist.MaskedMixture(omega_zi_mask, omega_dist, omega_zi_zero_dist) pyro.sample("omega_{}".format(t), omega_zi_dist, obs=config["observations"]["omega"][..., t])