examples/vae/vae_comparison.py (179 lines of code) (raw):

# Copyright (c) 2017-2019 Uber Technologies, Inc. # SPDX-License-Identifier: Apache-2.0 import argparse import itertools import os from abc import ABCMeta, abstractmethod import torch import torch.nn as nn from torch.nn import functional from torchvision.utils import save_image import pyro from pyro.contrib.examples import util from pyro.distributions import Bernoulli, Normal from pyro.infer import SVI, JitTrace_ELBO, Trace_ELBO from pyro.optim import Adam from utils.mnist_cached import DATA_DIR, RESULTS_DIR """ Comparison of VAE implementation in PyTorch and Pyro. This example can be used for profiling purposes. The PyTorch VAE example is taken (with minor modification) from pytorch/examples. Source: https://github.com/pytorch/examples/tree/master/vae """ TRAIN = 'train' TEST = 'test' OUTPUT_DIR = RESULTS_DIR # VAE encoder network class Encoder(nn.Module): def __init__(self): super().__init__() self.fc1 = nn.Linear(784, 400) self.fc21 = nn.Linear(400, 20) self.fc22 = nn.Linear(400, 20) self.relu = nn.ReLU() def forward(self, x): x = x.reshape(-1, 784) h1 = self.relu(self.fc1(x)) return self.fc21(h1), torch.exp(self.fc22(h1)) # VAE Decoder network class Decoder(nn.Module): def __init__(self): super().__init__() self.fc3 = nn.Linear(20, 400) self.fc4 = nn.Linear(400, 784) self.relu = nn.ReLU() def forward(self, z): h3 = self.relu(self.fc3(z)) return torch.sigmoid(self.fc4(h3)) class VAE(object, metaclass=ABCMeta): """ Abstract class for the variational auto-encoder. The abstract method for training the network is implemented by subclasses. """ def __init__(self, args, train_loader, test_loader): self.args = args self.vae_encoder = Encoder() self.vae_decoder = Decoder() self.train_loader = train_loader self.test_loader = test_loader self.mode = TRAIN def set_train(self, is_train=True): if is_train: self.mode = TRAIN self.vae_encoder.train() self.vae_decoder.train() else: self.mode = TEST self.vae_encoder.eval() self.vae_decoder.eval() @abstractmethod def compute_loss_and_gradient(self, x): """ Given a batch of data `x`, run the optimizer (backpropagate the gradient), and return the computed loss. :param x: batch of data or a single datum (MNIST image). :return: loss computed on the data batch. """ return def model_eval(self, x): """ Given a batch of data `x`, run it through the trained VAE network to get the reconstructed image. :param x: batch of data or a single datum (MNIST image). :return: reconstructed image, and the latent z's mean and variance. """ z_mean, z_var = self.vae_encoder(x) if self.mode == TRAIN: z = Normal(z_mean, z_var.sqrt()).rsample() else: z = z_mean return self.vae_decoder(z), z_mean, z_var def train(self, epoch): self.set_train(is_train=True) train_loss = 0 for batch_idx, (x, _) in enumerate(self.train_loader): loss = self.compute_loss_and_gradient(x) train_loss += loss print('====> Epoch: {} \nTraining loss: {:.4f}'.format( epoch, train_loss / len(self.train_loader.dataset))) def test(self, epoch): self.set_train(is_train=False) test_loss = 0 for i, (x, _) in enumerate(self.test_loader): with torch.no_grad(): recon_x = self.model_eval(x)[0] test_loss += self.compute_loss_and_gradient(x) if i == 0: n = min(x.size(0), 8) comparison = torch.cat([x[:n], recon_x.reshape(self.args.batch_size, 1, 28, 28)[:n]]) save_image(comparison.detach().cpu(), os.path.join(OUTPUT_DIR, 'reconstruction_' + str(epoch) + '.png'), nrow=n) test_loss /= len(self.test_loader.dataset) print('Test set loss: {:.4f}'.format(test_loss)) class PyTorchVAEImpl(VAE): """ Adapted from pytorch/examples. Source: https://github.com/pytorch/examples/tree/master/vae """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.optimizer = self.initialize_optimizer(lr=1e-3) def compute_loss_and_gradient(self, x): self.optimizer.zero_grad() recon_x, z_mean, z_var = self.model_eval(x) binary_cross_entropy = functional.binary_cross_entropy(recon_x, x.reshape(-1, 784)) # Uses analytical KL divergence expression for D_kl(q(z|x) || p(z)) # Refer to Appendix B from VAE paper: # Kingma and Welling. Auto-Encoding Variational Bayes. ICLR, 2014 # (https://arxiv.org/abs/1312.6114) kl_div = -0.5 * torch.sum(1 + z_var.log() - z_mean.pow(2) - z_var) kl_div /= self.args.batch_size * 784 loss = binary_cross_entropy + kl_div if self.mode == TRAIN: loss.backward() self.optimizer.step() return loss.item() def initialize_optimizer(self, lr=1e-3): model_params = itertools.chain(self.vae_encoder.parameters(), self.vae_decoder.parameters()) return torch.optim.Adam(model_params, lr) class PyroVAEImpl(VAE): """ Implementation of VAE using Pyro. Only the model and the guide specification is needed to run the optimizer (the objective function does not need to be specified as in the PyTorch implementation). """ def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.optimizer = self.initialize_optimizer(lr=1e-3) def model(self, data): decoder = pyro.module('decoder', self.vae_decoder) z_mean, z_std = torch.zeros([data.size(0), 20]), torch.ones([data.size(0), 20]) with pyro.plate('data', data.size(0)): z = pyro.sample('latent', Normal(z_mean, z_std).to_event(1)) img = decoder.forward(z) pyro.sample('obs', Bernoulli(img).to_event(1), obs=data.reshape(-1, 784)) def guide(self, data): encoder = pyro.module('encoder', self.vae_encoder) with pyro.plate('data', data.size(0)): z_mean, z_var = encoder.forward(data) pyro.sample('latent', Normal(z_mean, z_var.sqrt()).to_event(1)) def compute_loss_and_gradient(self, x): if self.mode == TRAIN: loss = self.optimizer.step(x) else: loss = self.optimizer.evaluate_loss(x) loss /= self.args.batch_size * 784 return loss def initialize_optimizer(self, lr): optimizer = Adam({'lr': lr}) elbo = JitTrace_ELBO() if self.args.jit else Trace_ELBO() return SVI(self.model, self.guide, optimizer, loss=elbo) def setup(args): pyro.set_rng_seed(args.rng_seed) train_loader = util.get_data_loader(dataset_name='MNIST', data_dir=DATA_DIR, batch_size=args.batch_size, is_training_set=True, shuffle=True) test_loader = util.get_data_loader(dataset_name='MNIST', data_dir=DATA_DIR, batch_size=args.batch_size, is_training_set=False, shuffle=True) global OUTPUT_DIR OUTPUT_DIR = os.path.join(RESULTS_DIR, args.impl) if not os.path.exists(OUTPUT_DIR): os.makedirs(OUTPUT_DIR) pyro.clear_param_store() return train_loader, test_loader def main(args): train_loader, test_loader = setup(args) if args.impl == 'pyro': vae = PyroVAEImpl(args, train_loader, test_loader) print('Running Pyro VAE implementation') elif args.impl == 'pytorch': vae = PyTorchVAEImpl(args, train_loader, test_loader) print('Running PyTorch VAE implementation') else: raise ValueError('Incorrect implementation specified: {}'.format(args.impl)) for i in range(args.num_epochs): vae.train(i) if not args.skip_eval: vae.test(i) if __name__ == '__main__': assert pyro.__version__.startswith('1.4.0') parser = argparse.ArgumentParser(description='VAE using MNIST dataset') parser.add_argument('-n', '--num-epochs', nargs='?', default=10, type=int) parser.add_argument('--batch_size', nargs='?', default=128, type=int) parser.add_argument('--rng_seed', nargs='?', default=0, type=int) parser.add_argument('--impl', nargs='?', default='pyro', type=str) parser.add_argument('--skip_eval', action='store_true') parser.add_argument('--jit', action='store_true') parser.set_defaults(skip_eval=False) args = parser.parse_args() main(args)