causalml/inference/meta/slearner.py [127:154]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
                yhat = np.zeros_like(y_filt, dtype=float)
                yhat[w == 0] = yhat_cs[group][mask][w == 0]
                yhat[w == 1] = yhat_ts[group][mask][w == 1]

                logger.info("Error metrics for group {}".format(group))
                regression_metrics(y_filt, yhat, w)

        te = np.zeros((X.shape[0], self.t_groups.shape[0]))
        for i, group in enumerate(self.t_groups):
            te[:, i] = yhat_ts[group] - yhat_cs[group]

        if not return_components:
            return te
        else:
            return te, yhat_cs, yhat_ts

    def fit_predict(
        self,
        X,
        treatment,
        y,
        p=None,
        return_ci=False,
        n_bootstraps=1000,
        bootstrap_size=10000,
        return_components=False,
        verbose=True,
    ):
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



causalml/inference/meta/tlearner.py [129:156]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
                yhat = np.zeros_like(y_filt, dtype=float)
                yhat[w == 0] = yhat_cs[group][mask][w == 0]
                yhat[w == 1] = yhat_ts[group][mask][w == 1]

                logger.info("Error metrics for group {}".format(group))
                regression_metrics(y_filt, yhat, w)

        te = np.zeros((X.shape[0], self.t_groups.shape[0]))
        for i, group in enumerate(self.t_groups):
            te[:, i] = yhat_ts[group] - yhat_cs[group]

        if not return_components:
            return te
        else:
            return te, yhat_cs, yhat_ts

    def fit_predict(
        self,
        X,
        treatment,
        y,
        p=None,
        return_ci=False,
        n_bootstraps=1000,
        bootstrap_size=10000,
        return_components=False,
        verbose=True,
    ):
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



