def fit()

in causalml/inference/meta/xlearner.py [0:0]


    def fit(self, X, treatment, y, p=None):
        """Fit the inference model.

        Args:
            X (np.matrix or np.array or pd.Dataframe): a feature matrix
            treatment (np.array or pd.Series): a treatment vector
            y (np.array or pd.Series): an outcome vector
            p (np.ndarray or pd.Series or dict, optional): an array of propensity scores of float (0,1) in the
                single-treatment case; or, a dictionary of treatment groups that map to propensity vectors of
                float (0,1); if None will run ElasticNetPropensityModel() to generate the propensity scores.
        """
        X, treatment, y = convert_pd_to_np(X, treatment, y)
        check_treatment_vector(treatment, self.control_name)
        self.t_groups = np.unique(treatment[treatment != self.control_name])
        self.t_groups.sort()

        if p is None:
            self._set_propensity_models(X=X, treatment=treatment, y=y)
            p = self.propensity
        else:
            p = self._format_p(p, self.t_groups)

        self._classes = {group: i for i, group in enumerate(self.t_groups)}
        self.models_mu_c = {group: deepcopy(self.model_mu_c) for group in self.t_groups}
        self.models_mu_t = {group: deepcopy(self.model_mu_t) for group in self.t_groups}
        self.models_tau_c = {
            group: deepcopy(self.model_tau_c) for group in self.t_groups
        }
        self.models_tau_t = {
            group: deepcopy(self.model_tau_t) for group in self.t_groups
        }
        self.vars_c = {}
        self.vars_t = {}

        for group in self.t_groups:
            mask = (treatment == group) | (treatment == self.control_name)
            treatment_filt = treatment[mask]
            X_filt = X[mask]
            y_filt = y[mask]
            w = (treatment_filt == group).astype(int)

            # Train outcome models
            self.models_mu_c[group].fit(X_filt[w == 0], y_filt[w == 0])
            self.models_mu_t[group].fit(X_filt[w == 1], y_filt[w == 1])

            # Calculate variances and treatment effects
            var_c = (
                y_filt[w == 0] - self.models_mu_c[group].predict(X_filt[w == 0])
            ).var()
            self.vars_c[group] = var_c
            var_t = (
                y_filt[w == 1] - self.models_mu_t[group].predict(X_filt[w == 1])
            ).var()
            self.vars_t[group] = var_t

            # Train treatment models
            d_c = self.models_mu_t[group].predict(X_filt[w == 0]) - y_filt[w == 0]
            d_t = y_filt[w == 1] - self.models_mu_c[group].predict(X_filt[w == 1])
            self.models_tau_c[group].fit(X_filt[w == 0], d_c)
            self.models_tau_t[group].fit(X_filt[w == 1], d_t)