def _fit()

in causalml/inference/tree/causal/causalforest.py [0:0]


    def _fit(self, X: np.ndarray, y: np.ndarray, sample_weight: np.ndarray = None):
        """
        Build a forest of trees from the training set (X, y).
        With modified _parallel_build_trees for Causal Trees used in BaseForest.fit()
        Source: https://github.com/scikit-learn/scikit-learn/blob/main/sklearn/ensemble/_forest.py

        Parameters
        ----------
        X : {array-like, sparse matrix} of shape (n_samples, n_features)
            The training input samples. Internally, its dtype will be converted
            to ``dtype=np.float32``. If a sparse matrix is provided, it will be
            converted into a sparse ``csc_matrix``.

        y : array-like of shape (n_samples,) or (n_samples, n_outputs)
            The target values (class labels in classification, real numbers in
            regression).

        sample_weight : array-like of shape (n_samples,), default=None
            Sample weights. If None, then samples are equally weighted. Splits
            that would create child nodes with net zero or negative weight are
            ignored while searching for a split in each node. In the case of
            classification, splits are also ignored if they would result in any
            single class carrying a negative weight in either child node.

        Returns
        -------
        self : object
            Fitted estimator.
        """
        # Validate or convert input data
        if issparse(y):
            raise ValueError("sparse multilabel-indicator for y is not supported.")
        X, y = self._validate_data(
            X, y, multi_output=True, accept_sparse="csc", dtype=DTYPE
        )
        if sample_weight is not None:
            sample_weight = _check_sample_weight(sample_weight, X)

        if issparse(X):
            # Pre-sort indices to avoid that each individual tree of the
            # ensemble sorts the indices.
            X.sort_indices()

        y = np.atleast_1d(y)
        if y.ndim == 2 and y.shape[1] == 1:
            warn(
                "A column-vector y was passed when a 1d array was"
                " expected. Please change the shape of y to "
                "(n_samples,), for example using ravel().",
                DataConversionWarning,
                stacklevel=2,
            )

        if y.ndim == 1:
            y = np.reshape(y, (-1, 1))

        if self.criterion == "poisson":
            if np.any(y < 0):
                raise ValueError(
                    "Some value(s) of y are negative which is "
                    "not allowed for Poisson regression."
                )
            if np.sum(y) <= 0:
                raise ValueError(
                    "Sum of y is not strictly positive which "
                    "is necessary for Poisson regression."
                )

        self.n_outputs_ = np.unique(sample_weight).astype(int).size + 1
        self.max_outputs_ = self.n_outputs_
        y, expanded_class_weight = self._validate_y_class_weight(y)

        if getattr(y, "dtype", None) != DOUBLE or not y.flags.contiguous:
            y = np.ascontiguousarray(y, dtype=DOUBLE)

        if expanded_class_weight is not None:
            if sample_weight is not None:
                sample_weight = sample_weight * expanded_class_weight
            else:
                sample_weight = expanded_class_weight

        if not self.bootstrap and self.max_samples is not None:
            raise ValueError(
                "`max_sample` cannot be set if `bootstrap=False`. "
                "Either switch to `bootstrap=True` or set "
                "`max_sample=None`."
            )
        elif self.bootstrap:
            n_samples_bootstrap = _get_n_samples_bootstrap(
                n_samples=X.shape[0], max_samples=self.max_samples
            )
        else:
            n_samples_bootstrap = None

        # Check parameters
        self._validate_estimator()

        if not self.bootstrap and self.oob_score:
            raise ValueError("Out of bag estimation only available if bootstrap=True")

        random_state = check_random_state(self.random_state)

        if not self.warm_start or not hasattr(self, "estimators_"):
            # Free allocated memory, if any
            self.estimators_ = []

        n_more_estimators = self.n_estimators - len(self.estimators_)

        if n_more_estimators < 0:
            raise ValueError(
                "n_estimators=%d must be larger or equal to "
                "len(estimators_)=%d when warm_start==True"
                % (self.n_estimators, len(self.estimators_))
            )

        elif n_more_estimators == 0:
            warn(
                "Warm-start fitting without increasing n_estimators does not "
                "fit new trees."
            )
        else:
            if self.warm_start and len(self.estimators_) > 0:
                # We draw from the random state to get the random state we
                # would have got if we hadn't used a warm_start.
                random_state.randint(MAX_INT, size=len(self.estimators_))

            trees = [
                self._make_estimator(append=False, random_state=random_state)
                for i in range(n_more_estimators)
            ]
            trees = Parallel(
                n_jobs=self.n_jobs,
                verbose=self.verbose,
                **_joblib_parallel_args,
            )(
                delayed(_parallel_build_trees)(
                    t,
                    self,
                    X,
                    y,
                    sample_weight,
                    i,
                    len(trees),
                    verbose=self.verbose,
                    class_weight=self.class_weight,
                    n_samples_bootstrap=n_samples_bootstrap,
                )
                for i, t in enumerate(trees)
            )

            self.estimators_.extend(trees)

        if self.oob_score:
            y_type = type_of_target(y)
            if y_type in ("multiclass-multioutput", "unknown"):
                raise ValueError(
                    "The type of target cannot be used to compute OOB "
                    f"estimates. Got {y_type} while only the following are "
                    "supported: continuous, continuous-multioutput, binary, "
                    "multiclass, multilabel-indicator."
                )
            self._set_oob_score_and_attributes(X, y)

        if hasattr(self, "classes_") and self.n_outputs_ == 1:
            self.n_classes_ = self.n_classes_[0]
            self.classes_ = self.classes_[0]

        return self