in causalml/dataset/classification.py [0:0]
def make_uplift_classification(
n_samples=1000,
treatment_name=["control", "treatment1", "treatment2", "treatment3"],
y_name="conversion",
n_classification_features=10,
n_classification_informative=5,
n_classification_redundant=0,
n_classification_repeated=0,
n_uplift_increase_dict={"treatment1": 2, "treatment2": 2, "treatment3": 2},
n_uplift_decrease_dict={"treatment1": 0, "treatment2": 0, "treatment3": 0},
delta_uplift_increase_dict={
"treatment1": 0.02,
"treatment2": 0.05,
"treatment3": 0.1,
},
delta_uplift_decrease_dict={
"treatment1": 0.0,
"treatment2": 0.0,
"treatment3": 0.0,
},
n_uplift_increase_mix_informative_dict={
"treatment1": 1,
"treatment2": 1,
"treatment3": 1,
},
n_uplift_decrease_mix_informative_dict={
"treatment1": 0,
"treatment2": 0,
"treatment3": 0,
},
positive_class_proportion=0.5,
random_seed=20190101,