in causalml/inference/meta/rlearner.py [0:0]
def fit(self, X, treatment, y, p=None, sample_weight=None, verbose=True):
"""Fit the treatment effect and outcome models of the R learner.
Args:
X (np.matrix or np.array or pd.Dataframe): a feature matrix
treatment (np.array or pd.Series): a treatment vector
y (np.array or pd.Series): an outcome vector
p (np.ndarray or pd.Series or dict, optional): an array of propensity scores of float (0,1) in the
single-treatment case; or, a dictionary of treatment groups that map to propensity vectors of
float (0,1); if None will run ElasticNetPropensityModel() to generate the propensity scores.
sample_weight (np.array or pd.Series, optional): an array of sample weights indicating the
weight of each observation for `effect_learner`. If None, it assumes equal weight.
verbose (bool, optional): whether to output progress logs
"""
X, treatment, y = convert_pd_to_np(X, treatment, y)
check_treatment_vector(treatment, self.control_name)
if sample_weight is not None:
assert len(sample_weight) == len(
y
), "Data length must be equal for sample_weight and the input data"
sample_weight = convert_pd_to_np(sample_weight)
self.t_groups = np.unique(treatment[treatment != self.control_name])
self.t_groups.sort()
if p is None:
self._set_propensity_models(X=X, treatment=treatment, y=y)
p = self.propensity
else:
p = self._format_p(p, self.t_groups)
self._classes = {group: i for i, group in enumerate(self.t_groups)}
self.models_tau = {group: deepcopy(self.model_tau) for group in self.t_groups}
self.vars_c = {}
self.vars_t = {}
if verbose:
logger.info("generating out-of-fold CV outcome estimates")
yhat = cross_val_predict(
self.model_mu, X, y, cv=self.cv, method="predict_proba", n_jobs=-1
)[:, 1]
for group in self.t_groups:
mask = (treatment == group) | (treatment == self.control_name)
treatment_filt = treatment[mask]
X_filt = X[mask]
y_filt = y[mask]
yhat_filt = yhat[mask]
p_filt = p[group][mask]
w = (treatment_filt == group).astype(int)
weight = (w - p_filt) ** 2
diff_c = y_filt[w == 0] - yhat_filt[w == 0]
diff_t = y_filt[w == 1] - yhat_filt[w == 1]
if sample_weight is not None:
sample_weight_filt = sample_weight[mask]
sample_weight_filt_c = sample_weight_filt[w == 0]
sample_weight_filt_t = sample_weight_filt[w == 1]
self.vars_c[group] = get_weighted_variance(diff_c, sample_weight_filt_c)
self.vars_t[group] = get_weighted_variance(diff_t, sample_weight_filt_t)
weight *= sample_weight_filt # update weight
else:
self.vars_c[group] = diff_c.var()
self.vars_t[group] = diff_t.var()
if verbose:
logger.info(
"training the treatment effect model for {} with R-loss".format(
group
)
)
self.models_tau[group].fit(
X_filt, (y_filt - yhat_filt) / (w - p_filt), sample_weight=weight
)