causalml/inference/meta/rlearner.py [451:466]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        self.t_groups = np.unique(treatment[treatment != self.control_name])
        self.t_groups.sort()

        if p is None:
            self._set_propensity_models(X=X, treatment=treatment, y=y)
            p = self.propensity
        else:
            p = self._format_p(p, self.t_groups)

        self._classes = {group: i for i, group in enumerate(self.t_groups)}
        self.models_tau = {group: deepcopy(self.model_tau) for group in self.t_groups}
        self.vars_c = {}
        self.vars_t = {}

        if verbose:
            logger.info("generating out-of-fold CV outcome estimates")
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



causalml/inference/meta/rlearner.py [606:621]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        self.t_groups = np.unique(treatment[treatment != self.control_name])
        self.t_groups.sort()

        if p is None:
            self._set_propensity_models(X=X, treatment=treatment, y=y)
            p = self.propensity
        else:
            p = self._format_p(p, self.t_groups)

        self._classes = {group: i for i, group in enumerate(self.t_groups)}
        self.models_tau = {group: deepcopy(self.model_tau) for group in self.t_groups}
        self.vars_c = {}
        self.vars_t = {}

        if verbose:
            logger.info("generating out-of-fold CV outcome estimates")
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



