in causalml/inference/tree/_tree/_classes.py [0:0]
def _validate_X_predict(self, X, check_input):
"""Validate the training data on predict (probabilities)."""
if check_input:
if self._support_missing_values(X):
force_all_finite = "allow-nan"
else:
force_all_finite = True
X = self._validate_data(
X,
dtype=DTYPE,
accept_sparse="csr",
reset=False,
force_all_finite=force_all_finite,
)
if issparse(X) and (
X.indices.dtype != np.intc or X.indptr.dtype != np.intc
):
raise ValueError("No support for np.int64 index based sparse matrices")
else:
# The number of features is checked regardless of `check_input`
self._check_n_features(X, reset=False)
return X