def _validate_X_predict()

in causalml/inference/tree/_tree/_classes.py [0:0]


    def _validate_X_predict(self, X, check_input):
        """Validate the training data on predict (probabilities)."""
        if check_input:
            if self._support_missing_values(X):
                force_all_finite = "allow-nan"
            else:
                force_all_finite = True
            X = self._validate_data(
                X,
                dtype=DTYPE,
                accept_sparse="csr",
                reset=False,
                force_all_finite=force_all_finite,
            )
            if issparse(X) and (
                X.indices.dtype != np.intc or X.indptr.dtype != np.intc
            ):
                raise ValueError("No support for np.int64 index based sparse matrices")
        else:
            # The number of features is checked regardless of `check_input`
            self._check_n_features(X, reset=False)
        return X