h3_faceijk.c (609 lines of code) (raw):
/*
* Copyright 2016-2023 Uber Technologies, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/** @file faceijk.c
* @brief Functions for working with icosahedral face-centered hex IJK
* coordinate systems.
*/
#include "h3_faceijk.h"
#include <assert.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "h3_constants.h"
#include "h3_coordijk.h"
#include "h3_h3Index.h"
#include "h3_latLng.h"
#include "h3_vec3d.h"
/** square root of 7 and inverse square root of 7 */
#define M_SQRT7 2.6457513110645905905016157536392604257102
#define M_RSQRT7 0.37796447300922722721451653623418006081576
/** @brief icosahedron face centers in lat/lng radians */
const LatLng faceCenterGeo[NUM_ICOSA_FACES] = {
{0.803582649718989942, 1.248397419617396099}, // face 0
{1.307747883455638156, 2.536945009877921159}, // face 1
{1.054751253523952054, -1.347517358900396623}, // face 2
{0.600191595538186799, -0.450603909469755746}, // face 3
{0.491715428198773866, 0.401988202911306943}, // face 4
{0.172745327415618701, 1.678146885280433686}, // face 5
{0.605929321571350690, 2.953923329812411617}, // face 6
{0.427370518328979641, -1.888876200336285401}, // face 7
{-0.079066118549212831, -0.733429513380867741}, // face 8
{-0.230961644455383637, 0.506495587332349035}, // face 9
{0.079066118549212831, 2.408163140208925497}, // face 10
{0.230961644455383637, -2.635097066257444203}, // face 11
{-0.172745327415618701, -1.463445768309359553}, // face 12
{-0.605929321571350690, -0.187669323777381622}, // face 13
{-0.427370518328979641, 1.252716453253507838}, // face 14
{-0.600191595538186799, 2.690988744120037492}, // face 15
{-0.491715428198773866, -2.739604450678486295}, // face 16
{-0.803582649718989942, -1.893195233972397139}, // face 17
{-1.307747883455638156, -0.604647643711872080}, // face 18
{-1.054751253523952054, 1.794075294689396615}, // face 19
};
/** @brief icosahedron face centers in x/y/z on the unit sphere */
static const Vec3d faceCenterPoint[NUM_ICOSA_FACES] = {
{0.2199307791404606, 0.6583691780274996, 0.7198475378926182}, // face 0
{-0.2139234834501421, 0.1478171829550703, 0.9656017935214205}, // face 1
{0.1092625278784797, -0.4811951572873210, 0.8697775121287253}, // face 2
{0.7428567301586791, -0.3593941678278028, 0.5648005936517033}, // face 3
{0.8112534709140969, 0.3448953237639384, 0.4721387736413930}, // face 4
{-0.1055498149613921, 0.9794457296411413, 0.1718874610009365}, // face 5
{-0.8075407579970092, 0.1533552485898818, 0.5695261994882688}, // face 6
{-0.2846148069787907, -0.8644080972654206, 0.4144792552473539}, // face 7
{0.7405621473854482, -0.6673299564565524, -0.0789837646326737}, // face 8
{0.8512303986474293, 0.4722343788582681, -0.2289137388687808}, // face 9
{-0.7405621473854481, 0.6673299564565524, 0.0789837646326737}, // face 10
{-0.8512303986474292, -0.4722343788582682, 0.2289137388687808}, // face 11
{0.1055498149613919, -0.9794457296411413, -0.1718874610009365}, // face 12
{0.8075407579970092, -0.1533552485898819, -0.5695261994882688}, // face 13
{0.2846148069787908, 0.8644080972654204, -0.4144792552473539}, // face 14
{-0.7428567301586791, 0.3593941678278027, -0.5648005936517033}, // face 15
{-0.8112534709140971, -0.3448953237639382, -0.4721387736413930}, // face 16
{-0.2199307791404607, -0.6583691780274996, -0.7198475378926182}, // face 17
{0.2139234834501420, -0.1478171829550704, -0.9656017935214205}, // face 18
{-0.1092625278784796, 0.4811951572873210, -0.8697775121287253}, // face 19
};
/** @brief icosahedron face ijk axes as azimuth in radians from face center to
* vertex 0/1/2 respectively
*/
static const double faceAxesAzRadsCII[NUM_ICOSA_FACES][3] = {
{5.619958268523939882, 3.525563166130744542,
1.431168063737548730}, // face 0
{5.760339081714187279, 3.665943979320991689,
1.571548876927796127}, // face 1
{0.780213654393430055, 4.969003859179821079,
2.874608756786625655}, // face 2
{0.430469363979999913, 4.619259568766391033,
2.524864466373195467}, // face 3
{6.130269123335111400, 4.035874020941915804,
1.941478918548720291}, // face 4
{2.692877706530642877, 0.598482604137447119,
4.787272808923838195}, // face 5
{2.982963003477243874, 0.888567901084048369,
5.077358105870439581}, // face 6
{3.532912002790141181, 1.438516900396945656,
5.627307105183336758}, // face 7
{3.494305004259568154, 1.399909901866372864,
5.588700106652763840}, // face 8
{3.003214169499538391, 0.908819067106342928,
5.097609271892733906}, // face 9
{5.930472956509811562, 3.836077854116615875,
1.741682751723420374}, // face 10
{0.138378484090254847, 4.327168688876645809,
2.232773586483450311}, // face 11
{0.448714947059150361, 4.637505151845541521,
2.543110049452346120}, // face 12
{0.158629650112549365, 4.347419854898940135,
2.253024752505744869}, // face 13
{5.891865957979238535, 3.797470855586042958,
1.703075753192847583}, // face 14
{2.711123289609793325, 0.616728187216597771,
4.805518392002988683}, // face 15
{3.294508837434268316, 1.200113735041072948,
5.388903939827463911}, // face 16
{3.804819692245439833, 1.710424589852244509,
5.899214794638635174}, // face 17
{3.664438879055192436, 1.570043776661997111,
5.758833981448388027}, // face 18
{2.361378999196363184, 0.266983896803167583,
4.455774101589558636}, // face 19
};
/** @brief Definition of which faces neighbor each other. */
static const FaceOrientIJK faceNeighbors[NUM_ICOSA_FACES][4] = {
{
// face 0
{0, {0, 0, 0}, 0}, // central face
{4, {2, 0, 2}, 1}, // ij quadrant
{1, {2, 2, 0}, 5}, // ki quadrant
{5, {0, 2, 2}, 3} // jk quadrant
},
{
// face 1
{1, {0, 0, 0}, 0}, // central face
{0, {2, 0, 2}, 1}, // ij quadrant
{2, {2, 2, 0}, 5}, // ki quadrant
{6, {0, 2, 2}, 3} // jk quadrant
},
{
// face 2
{2, {0, 0, 0}, 0}, // central face
{1, {2, 0, 2}, 1}, // ij quadrant
{3, {2, 2, 0}, 5}, // ki quadrant
{7, {0, 2, 2}, 3} // jk quadrant
},
{
// face 3
{3, {0, 0, 0}, 0}, // central face
{2, {2, 0, 2}, 1}, // ij quadrant
{4, {2, 2, 0}, 5}, // ki quadrant
{8, {0, 2, 2}, 3} // jk quadrant
},
{
// face 4
{4, {0, 0, 0}, 0}, // central face
{3, {2, 0, 2}, 1}, // ij quadrant
{0, {2, 2, 0}, 5}, // ki quadrant
{9, {0, 2, 2}, 3} // jk quadrant
},
{
// face 5
{5, {0, 0, 0}, 0}, // central face
{10, {2, 2, 0}, 3}, // ij quadrant
{14, {2, 0, 2}, 3}, // ki quadrant
{0, {0, 2, 2}, 3} // jk quadrant
},
{
// face 6
{6, {0, 0, 0}, 0}, // central face
{11, {2, 2, 0}, 3}, // ij quadrant
{10, {2, 0, 2}, 3}, // ki quadrant
{1, {0, 2, 2}, 3} // jk quadrant
},
{
// face 7
{7, {0, 0, 0}, 0}, // central face
{12, {2, 2, 0}, 3}, // ij quadrant
{11, {2, 0, 2}, 3}, // ki quadrant
{2, {0, 2, 2}, 3} // jk quadrant
},
{
// face 8
{8, {0, 0, 0}, 0}, // central face
{13, {2, 2, 0}, 3}, // ij quadrant
{12, {2, 0, 2}, 3}, // ki quadrant
{3, {0, 2, 2}, 3} // jk quadrant
},
{
// face 9
{9, {0, 0, 0}, 0}, // central face
{14, {2, 2, 0}, 3}, // ij quadrant
{13, {2, 0, 2}, 3}, // ki quadrant
{4, {0, 2, 2}, 3} // jk quadrant
},
{
// face 10
{10, {0, 0, 0}, 0}, // central face
{5, {2, 2, 0}, 3}, // ij quadrant
{6, {2, 0, 2}, 3}, // ki quadrant
{15, {0, 2, 2}, 3} // jk quadrant
},
{
// face 11
{11, {0, 0, 0}, 0}, // central face
{6, {2, 2, 0}, 3}, // ij quadrant
{7, {2, 0, 2}, 3}, // ki quadrant
{16, {0, 2, 2}, 3} // jk quadrant
},
{
// face 12
{12, {0, 0, 0}, 0}, // central face
{7, {2, 2, 0}, 3}, // ij quadrant
{8, {2, 0, 2}, 3}, // ki quadrant
{17, {0, 2, 2}, 3} // jk quadrant
},
{
// face 13
{13, {0, 0, 0}, 0}, // central face
{8, {2, 2, 0}, 3}, // ij quadrant
{9, {2, 0, 2}, 3}, // ki quadrant
{18, {0, 2, 2}, 3} // jk quadrant
},
{
// face 14
{14, {0, 0, 0}, 0}, // central face
{9, {2, 2, 0}, 3}, // ij quadrant
{5, {2, 0, 2}, 3}, // ki quadrant
{19, {0, 2, 2}, 3} // jk quadrant
},
{
// face 15
{15, {0, 0, 0}, 0}, // central face
{16, {2, 0, 2}, 1}, // ij quadrant
{19, {2, 2, 0}, 5}, // ki quadrant
{10, {0, 2, 2}, 3} // jk quadrant
},
{
// face 16
{16, {0, 0, 0}, 0}, // central face
{17, {2, 0, 2}, 1}, // ij quadrant
{15, {2, 2, 0}, 5}, // ki quadrant
{11, {0, 2, 2}, 3} // jk quadrant
},
{
// face 17
{17, {0, 0, 0}, 0}, // central face
{18, {2, 0, 2}, 1}, // ij quadrant
{16, {2, 2, 0}, 5}, // ki quadrant
{12, {0, 2, 2}, 3} // jk quadrant
},
{
// face 18
{18, {0, 0, 0}, 0}, // central face
{19, {2, 0, 2}, 1}, // ij quadrant
{17, {2, 2, 0}, 5}, // ki quadrant
{13, {0, 2, 2}, 3} // jk quadrant
},
{
// face 19
{19, {0, 0, 0}, 0}, // central face
{15, {2, 0, 2}, 1}, // ij quadrant
{18, {2, 2, 0}, 5}, // ki quadrant
{14, {0, 2, 2}, 3} // jk quadrant
}};
/** @brief direction from the origin face to the destination face, relative to
* the origin face's coordinate system, or -1 if not adjacent.
*/
static const int adjacentFaceDir[NUM_ICOSA_FACES][NUM_ICOSA_FACES] = {
{0, KI, -1, -1, IJ, JK, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, // face 0
{IJ, 0, KI, -1, -1, -1, JK, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, // face 1
{-1, IJ, 0, KI, -1, -1, -1, JK, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, // face 2
{-1, -1, IJ, 0, KI, -1, -1, -1, JK, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, // face 3
{KI, -1, -1, IJ, 0, -1, -1, -1, -1, JK,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1}, // face 4
{JK, -1, -1, -1, -1, 0, -1, -1, -1, -1,
IJ, -1, -1, -1, KI, -1, -1, -1, -1, -1}, // face 5
{-1, JK, -1, -1, -1, -1, 0, -1, -1, -1,
KI, IJ, -1, -1, -1, -1, -1, -1, -1, -1}, // face 6
{-1, -1, JK, -1, -1, -1, -1, 0, -1, -1,
-1, KI, IJ, -1, -1, -1, -1, -1, -1, -1}, // face 7
{-1, -1, -1, JK, -1, -1, -1, -1, 0, -1,
-1, -1, KI, IJ, -1, -1, -1, -1, -1, -1}, // face 8
{-1, -1, -1, -1, JK, -1, -1, -1, -1, 0,
-1, -1, -1, KI, IJ, -1, -1, -1, -1, -1}, // face 9
{-1, -1, -1, -1, -1, IJ, KI, -1, -1, -1,
0, -1, -1, -1, -1, JK, -1, -1, -1, -1}, // face 10
{-1, -1, -1, -1, -1, -1, IJ, KI, -1, -1,
-1, 0, -1, -1, -1, -1, JK, -1, -1, -1}, // face 11
{-1, -1, -1, -1, -1, -1, -1, IJ, KI, -1,
-1, -1, 0, -1, -1, -1, -1, JK, -1, -1}, // face 12
{-1, -1, -1, -1, -1, -1, -1, -1, IJ, KI,
-1, -1, -1, 0, -1, -1, -1, -1, JK, -1}, // face 13
{-1, -1, -1, -1, -1, KI, -1, -1, -1, IJ,
-1, -1, -1, -1, 0, -1, -1, -1, -1, JK}, // face 14
{-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
JK, -1, -1, -1, -1, 0, IJ, -1, -1, KI}, // face 15
{-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, JK, -1, -1, -1, KI, 0, IJ, -1, -1}, // face 16
{-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, JK, -1, -1, -1, KI, 0, IJ, -1}, // face 17
{-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, JK, -1, -1, -1, KI, 0, IJ}, // face 18
{-1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
-1, -1, -1, -1, JK, IJ, -1, -1, KI, 0} // face 19
};
/** @brief overage distance table */
static const int maxDimByCIIres[] = {
2, // res 0
-1, // res 1
14, // res 2
-1, // res 3
98, // res 4
-1, // res 5
686, // res 6
-1, // res 7
4802, // res 8
-1, // res 9
33614, // res 10
-1, // res 11
235298, // res 12
-1, // res 13
1647086, // res 14
-1, // res 15
11529602 // res 16
};
/** @brief unit scale distance table */
static const int unitScaleByCIIres[] = {
1, // res 0
-1, // res 1
7, // res 2
-1, // res 3
49, // res 4
-1, // res 5
343, // res 6
-1, // res 7
2401, // res 8
-1, // res 9
16807, // res 10
-1, // res 11
117649, // res 12
-1, // res 13
823543, // res 14
-1, // res 15
5764801 // res 16
};
/**
* Encodes a coordinate on the sphere to the FaceIJK address of the containing
* cell at the specified resolution.
*
* @param g The spherical coordinates to encode.
* @param res The desired H3 resolution for the encoding.
* @param h The FaceIJK address of the containing cell at resolution res.
*/
void _geoToFaceIjk(const LatLng *g, int res, FaceIJK *h) {
// first convert to hex2d
Vec2d v;
_geoToHex2d(g, res, &h->face, &v);
// then convert to ijk+
_hex2dToCoordIJK(&v, &h->coord);
}
/**
* Encodes a coordinate on the sphere to the corresponding icosahedral face and
* containing 2D hex coordinates relative to that face center.
*
* @param g The spherical coordinates to encode.
* @param res The desired H3 resolution for the encoding.
* @param face The icosahedral face containing the spherical coordinates.
* @param v The 2D hex coordinates of the cell containing the point.
*/
void _geoToHex2d(const LatLng *g, int res, int *face, Vec2d *v) {
// determine the icosahedron face
double sqd;
_geoToClosestFace(g, face, &sqd);
// cos(r) = 1 - 2 * sin^2(r/2) = 1 - 2 * (sqd / 4) = 1 - sqd/2
double r = acos(1 - sqd * 0.5);
if (r < EPSILON) {
v->x = v->y = 0.0;
return;
}
// now have face and r, now find CCW theta from CII i-axis
double theta =
_posAngleRads(faceAxesAzRadsCII[*face][0] -
_posAngleRads(_geoAzimuthRads(&faceCenterGeo[*face], g)));
// adjust theta for Class III (odd resolutions)
if (isResolutionClassIII(res))
theta = _posAngleRads(theta - M_AP7_ROT_RADS);
// perform gnomonic scaling of r
r = tan(r);
// scale for current resolution length u
r *= INV_RES0_U_GNOMONIC;
for (int i = 0; i < res; i++) r *= M_SQRT7;
// we now have (r, theta) in hex2d with theta ccw from x-axes
// convert to local x,y
v->x = r * cos(theta);
v->y = r * sin(theta);
}
/**
* Determines the center point in spherical coordinates of a cell given by 2D
* hex coordinates on a particular icosahedral face.
*
* @param v The 2D hex coordinates of the cell.
* @param face The icosahedral face upon which the 2D hex coordinate system is
* centered.
* @param res The H3 resolution of the cell.
* @param substrate Indicates whether or not this grid is actually a substrate
* grid relative to the specified resolution.
* @param g The spherical coordinates of the cell center point.
*/
void _hex2dToGeo(const Vec2d *v, int face, int res, int substrate, LatLng *g) {
// calculate (r, theta) in hex2d
double r = _v2dMag(v);
if (r < EPSILON) {
*g = faceCenterGeo[face];
return;
}
double theta = atan2(v->y, v->x);
// scale for current resolution length u
for (int i = 0; i < res; i++) r *= M_RSQRT7;
// scale accordingly if this is a substrate grid
if (substrate) {
r *= M_ONETHIRD;
if (isResolutionClassIII(res)) r *= M_RSQRT7;
}
r *= RES0_U_GNOMONIC;
// perform inverse gnomonic scaling of r
r = atan(r);
// adjust theta for Class III
// if a substrate grid, then it's already been adjusted for Class III
if (!substrate && isResolutionClassIII(res))
theta = _posAngleRads(theta + M_AP7_ROT_RADS);
// find theta as an azimuth
theta = _posAngleRads(faceAxesAzRadsCII[face][0] - theta);
// now find the point at (r,theta) from the face center
_geoAzDistanceRads(&faceCenterGeo[face], theta, r, g);
}
/**
* Determines the center point in spherical coordinates of a cell given by
* a FaceIJK address at a specified resolution.
*
* @param h The FaceIJK address of the cell.
* @param res The H3 resolution of the cell.
* @param g The spherical coordinates of the cell center point.
*/
void _faceIjkToGeo(const FaceIJK *h, int res, LatLng *g) {
Vec2d v;
_ijkToHex2d(&h->coord, &v);
_hex2dToGeo(&v, h->face, res, 0, g);
}
/**
* Generates the cell boundary in spherical coordinates for a pentagonal cell
* given by a FaceIJK address at a specified resolution.
*
* @param h The FaceIJK address of the pentagonal cell.
* @param res The H3 resolution of the cell.
* @param start The first topological vertex to return.
* @param length The number of topological vertexes to return.
* @param g The spherical coordinates of the cell boundary.
*/
void _faceIjkPentToCellBoundary(const FaceIJK *h, int res, int start,
int length, CellBoundary *g) {
int adjRes = res;
FaceIJK centerIJK = *h;
FaceIJK fijkVerts[NUM_PENT_VERTS];
_faceIjkPentToVerts(¢erIJK, &adjRes, fijkVerts);
// If we're returning the entire loop, we need one more iteration in case
// of a distortion vertex on the last edge
int additionalIteration = length == NUM_PENT_VERTS ? 1 : 0;
// convert each vertex to lat/lng
// adjust the face of each vertex as appropriate and introduce
// edge-crossing vertices as needed
g->numVerts = 0;
FaceIJK lastFijk;
for (int vert = start; vert < start + length + additionalIteration;
vert++) {
int v = vert % NUM_PENT_VERTS;
FaceIJK fijk = fijkVerts[v];
_adjustPentVertOverage(&fijk, adjRes);
// all Class III pentagon edges cross icosa edges
// note that Class II pentagons have vertices on the edge,
// not edge intersections
if (isResolutionClassIII(res) && vert > start) {
// find hex2d of the two vertexes on the last face
FaceIJK tmpFijk = fijk;
Vec2d orig2d0;
_ijkToHex2d(&lastFijk.coord, &orig2d0);
int currentToLastDir = adjacentFaceDir[tmpFijk.face][lastFijk.face];
const FaceOrientIJK *fijkOrient =
&faceNeighbors[tmpFijk.face][currentToLastDir];
tmpFijk.face = fijkOrient->face;
CoordIJK *ijk = &tmpFijk.coord;
// rotate and translate for adjacent face
for (int i = 0; i < fijkOrient->ccwRot60; i++) _ijkRotate60ccw(ijk);
CoordIJK transVec = fijkOrient->translate;
_ijkScale(&transVec, unitScaleByCIIres[adjRes] * 3);
_ijkAdd(ijk, &transVec, ijk);
_ijkNormalize(ijk);
Vec2d orig2d1;
_ijkToHex2d(ijk, &orig2d1);
// find the appropriate icosa face edge vertexes
int maxDim = maxDimByCIIres[adjRes];
Vec2d v0 = {3.0 * maxDim, 0.0};
Vec2d v1 = {-1.5 * maxDim, 3.0 * M_SQRT3_2 * maxDim};
Vec2d v2 = {-1.5 * maxDim, -3.0 * M_SQRT3_2 * maxDim};
Vec2d *edge0;
Vec2d *edge1;
switch (adjacentFaceDir[tmpFijk.face][fijk.face]) {
case IJ:
edge0 = &v0;
edge1 = &v1;
break;
case JK:
edge0 = &v1;
edge1 = &v2;
break;
case KI:
default:
assert(adjacentFaceDir[tmpFijk.face][fijk.face] == KI);
edge0 = &v2;
edge1 = &v0;
break;
}
// find the intersection and add the lat/lng point to the result
Vec2d inter;
_v2dIntersect(&orig2d0, &orig2d1, edge0, edge1, &inter);
_hex2dToGeo(&inter, tmpFijk.face, adjRes, 1,
&g->verts[g->numVerts]);
g->numVerts++;
}
// convert vertex to lat/lng and add to the result
// vert == start + NUM_PENT_VERTS is only used to test for possible
// intersection on last edge
if (vert < start + NUM_PENT_VERTS) {
Vec2d vec;
_ijkToHex2d(&fijk.coord, &vec);
_hex2dToGeo(&vec, fijk.face, adjRes, 1, &g->verts[g->numVerts]);
g->numVerts++;
}
lastFijk = fijk;
}
}
/**
* Get the vertices of a pentagon cell as substrate FaceIJK addresses
*
* @param fijk The FaceIJK address of the cell.
* @param res The H3 resolution of the cell. This may be adjusted if
* necessary for the substrate grid resolution.
* @param fijkVerts Output array for the vertices
*/
void _faceIjkPentToVerts(FaceIJK *fijk, int *res, FaceIJK *fijkVerts) {
// the vertexes of an origin-centered pentagon in a Class II resolution on a
// substrate grid with aperture sequence 33r. The aperture 3 gets us the
// vertices, and the 3r gets us back to Class II.
// vertices listed ccw from the i-axes
CoordIJK vertsCII[NUM_PENT_VERTS] = {
{2, 1, 0}, // 0
{1, 2, 0}, // 1
{0, 2, 1}, // 2
{0, 1, 2}, // 3
{1, 0, 2}, // 4
};
// the vertexes of an origin-centered pentagon in a Class III resolution on
// a substrate grid with aperture sequence 33r7r. The aperture 3 gets us the
// vertices, and the 3r7r gets us to Class II. vertices listed ccw from the
// i-axes
CoordIJK vertsCIII[NUM_PENT_VERTS] = {
{5, 4, 0}, // 0
{1, 5, 0}, // 1
{0, 5, 4}, // 2
{0, 1, 5}, // 3
{4, 0, 5}, // 4
};
// get the correct set of substrate vertices for this resolution
CoordIJK *verts;
if (isResolutionClassIII(*res))
verts = vertsCIII;
else
verts = vertsCII;
// adjust the center point to be in an aperture 33r substrate grid
// these should be composed for speed
_downAp3(&fijk->coord);
_downAp3r(&fijk->coord);
// if res is Class III we need to add a cw aperture 7 to get to
// icosahedral Class II
if (isResolutionClassIII(*res)) {
_downAp7r(&fijk->coord);
*res += 1;
}
// The center point is now in the same substrate grid as the origin
// cell vertices. Add the center point substate coordinates
// to each vertex to translate the vertices to that cell.
for (int v = 0; v < NUM_PENT_VERTS; v++) {
fijkVerts[v].face = fijk->face;
_ijkAdd(&fijk->coord, &verts[v], &fijkVerts[v].coord);
_ijkNormalize(&fijkVerts[v].coord);
}
}
/**
* Generates the cell boundary in spherical coordinates for a cell given by a
* FaceIJK address at a specified resolution.
*
* @param h The FaceIJK address of the cell.
* @param res The H3 resolution of the cell.
* @param start The first topological vertex to return.
* @param length The number of topological vertexes to return.
* @param g The spherical coordinates of the cell boundary.
*/
void _faceIjkToCellBoundary(const FaceIJK *h, int res, int start, int length,
CellBoundary *g) {
int adjRes = res;
FaceIJK centerIJK = *h;
FaceIJK fijkVerts[NUM_HEX_VERTS];
_faceIjkToVerts(¢erIJK, &adjRes, fijkVerts);
// If we're returning the entire loop, we need one more iteration in case
// of a distortion vertex on the last edge
int additionalIteration = length == NUM_HEX_VERTS ? 1 : 0;
// convert each vertex to lat/lng
// adjust the face of each vertex as appropriate and introduce
// edge-crossing vertices as needed
g->numVerts = 0;
int lastFace = -1;
Overage lastOverage = NO_OVERAGE;
for (int vert = start; vert < start + length + additionalIteration;
vert++) {
int v = vert % NUM_HEX_VERTS;
FaceIJK fijk = fijkVerts[v];
const int pentLeading4 = 0;
Overage overage = _adjustOverageClassII(&fijk, adjRes, pentLeading4, 1);
/*
Check for edge-crossing. Each face of the underlying icosahedron is a
different projection plane. So if an edge of the hexagon crosses an
icosahedron edge, an additional vertex must be introduced at that
intersection point. Then each half of the cell edge can be projected
to geographic coordinates using the appropriate icosahedron face
projection. Note that Class II cell edges have vertices on the face
edge, with no edge line intersections.
*/
if (isResolutionClassIII(res) && vert > start &&
fijk.face != lastFace && lastOverage != FACE_EDGE) {
// find hex2d of the two vertexes on original face
int lastV = (v + 5) % NUM_HEX_VERTS;
Vec2d orig2d0;
_ijkToHex2d(&fijkVerts[lastV].coord, &orig2d0);
Vec2d orig2d1;
_ijkToHex2d(&fijkVerts[v].coord, &orig2d1);
// find the appropriate icosa face edge vertexes
int maxDim = maxDimByCIIres[adjRes];
Vec2d v0 = {3.0 * maxDim, 0.0};
Vec2d v1 = {-1.5 * maxDim, 3.0 * M_SQRT3_2 * maxDim};
Vec2d v2 = {-1.5 * maxDim, -3.0 * M_SQRT3_2 * maxDim};
int face2 = ((lastFace == centerIJK.face) ? fijk.face : lastFace);
Vec2d *edge0;
Vec2d *edge1;
switch (adjacentFaceDir[centerIJK.face][face2]) {
case IJ:
edge0 = &v0;
edge1 = &v1;
break;
case JK:
edge0 = &v1;
edge1 = &v2;
break;
// case KI:
default:
assert(adjacentFaceDir[centerIJK.face][face2] == KI);
edge0 = &v2;
edge1 = &v0;
break;
}
// find the intersection and add the lat/lng point to the result
Vec2d inter;
_v2dIntersect(&orig2d0, &orig2d1, edge0, edge1, &inter);
/*
If a point of intersection occurs at a hexagon vertex, then each
adjacent hexagon edge will lie completely on a single icosahedron
face, and no additional vertex is required.
*/
bool isIntersectionAtVertex = _v2dAlmostEquals(&orig2d0, &inter) ||
_v2dAlmostEquals(&orig2d1, &inter);
if (!isIntersectionAtVertex) {
_hex2dToGeo(&inter, centerIJK.face, adjRes, 1,
&g->verts[g->numVerts]);
g->numVerts++;
}
}
// convert vertex to lat/lng and add to the result
// vert == start + NUM_HEX_VERTS is only used to test for possible
// intersection on last edge
if (vert < start + NUM_HEX_VERTS) {
Vec2d vec;
_ijkToHex2d(&fijk.coord, &vec);
_hex2dToGeo(&vec, fijk.face, adjRes, 1, &g->verts[g->numVerts]);
g->numVerts++;
}
lastFace = fijk.face;
lastOverage = overage;
}
}
/**
* Get the vertices of a cell as substrate FaceIJK addresses
*
* @param fijk The FaceIJK address of the cell.
* @param res The H3 resolution of the cell. This may be adjusted if
* necessary for the substrate grid resolution.
* @param fijkVerts Output array for the vertices
*/
void _faceIjkToVerts(FaceIJK *fijk, int *res, FaceIJK *fijkVerts) {
// the vertexes of an origin-centered cell in a Class II resolution on a
// substrate grid with aperture sequence 33r. The aperture 3 gets us the
// vertices, and the 3r gets us back to Class II.
// vertices listed ccw from the i-axes
CoordIJK vertsCII[NUM_HEX_VERTS] = {
{2, 1, 0}, // 0
{1, 2, 0}, // 1
{0, 2, 1}, // 2
{0, 1, 2}, // 3
{1, 0, 2}, // 4
{2, 0, 1} // 5
};
// the vertexes of an origin-centered cell in a Class III resolution on a
// substrate grid with aperture sequence 33r7r. The aperture 3 gets us the
// vertices, and the 3r7r gets us to Class II.
// vertices listed ccw from the i-axes
CoordIJK vertsCIII[NUM_HEX_VERTS] = {
{5, 4, 0}, // 0
{1, 5, 0}, // 1
{0, 5, 4}, // 2
{0, 1, 5}, // 3
{4, 0, 5}, // 4
{5, 0, 1} // 5
};
// get the correct set of substrate vertices for this resolution
CoordIJK *verts;
if (isResolutionClassIII(*res))
verts = vertsCIII;
else
verts = vertsCII;
// adjust the center point to be in an aperture 33r substrate grid
// these should be composed for speed
_downAp3(&fijk->coord);
_downAp3r(&fijk->coord);
// if res is Class III we need to add a cw aperture 7 to get to
// icosahedral Class II
if (isResolutionClassIII(*res)) {
_downAp7r(&fijk->coord);
*res += 1;
}
// The center point is now in the same substrate grid as the origin
// cell vertices. Add the center point substate coordinates
// to each vertex to translate the vertices to that cell.
for (int v = 0; v < NUM_HEX_VERTS; v++) {
fijkVerts[v].face = fijk->face;
_ijkAdd(&fijk->coord, &verts[v], &fijkVerts[v].coord);
_ijkNormalize(&fijkVerts[v].coord);
}
}
/**
* Adjusts a FaceIJK address in place so that the resulting cell address is
* relative to the correct icosahedral face.
*
* @param fijk The FaceIJK address of the cell.
* @param res The H3 resolution of the cell.
* @param pentLeading4 Whether or not the cell is a pentagon with a leading
* digit 4.
* @param substrate Whether or not the cell is in a substrate grid.
* @return 0 if on original face (no overage); 1 if on face edge (only occurs
* on substrate grids); 2 if overage on new face interior
*/
Overage _adjustOverageClassII(FaceIJK *fijk, int res, int pentLeading4,
int substrate) {
Overage overage = NO_OVERAGE;
CoordIJK *ijk = &fijk->coord;
// get the maximum dimension value; scale if a substrate grid
int maxDim = maxDimByCIIres[res];
if (substrate) maxDim *= 3;
// check for overage
if (substrate && ijk->i + ijk->j + ijk->k == maxDim) // on edge
overage = FACE_EDGE;
else if (ijk->i + ijk->j + ijk->k > maxDim) // overage
{
overage = NEW_FACE;
const FaceOrientIJK *fijkOrient;
if (ijk->k > 0) {
if (ijk->j > 0) // jk "quadrant"
fijkOrient = &faceNeighbors[fijk->face][JK];
else // ik "quadrant"
{
fijkOrient = &faceNeighbors[fijk->face][KI];
// adjust for the pentagonal missing sequence
if (pentLeading4) {
// translate origin to center of pentagon
CoordIJK origin;
_setIJK(&origin, maxDim, 0, 0);
CoordIJK tmp;
_ijkSub(ijk, &origin, &tmp);
// rotate to adjust for the missing sequence
_ijkRotate60cw(&tmp);
// translate the origin back to the center of the triangle
_ijkAdd(&tmp, &origin, ijk);
}
}
} else // ij "quadrant"
fijkOrient = &faceNeighbors[fijk->face][IJ];
fijk->face = fijkOrient->face;
// rotate and translate for adjacent face
for (int i = 0; i < fijkOrient->ccwRot60; i++) _ijkRotate60ccw(ijk);
CoordIJK transVec = fijkOrient->translate;
int unitScale = unitScaleByCIIres[res];
if (substrate) unitScale *= 3;
_ijkScale(&transVec, unitScale);
_ijkAdd(ijk, &transVec, ijk);
_ijkNormalize(ijk);
// overage points on pentagon boundaries can end up on edges
if (substrate && ijk->i + ijk->j + ijk->k == maxDim) // on edge
overage = FACE_EDGE;
}
return overage;
}
/**
* Adjusts a FaceIJK address for a pentagon vertex in a substrate grid in
* place so that the resulting cell address is relative to the correct
* icosahedral face.
*
* @param fijk The FaceIJK address of the cell.
* @param res The H3 resolution of the cell.
*/
Overage _adjustPentVertOverage(FaceIJK *fijk, int res) {
int pentLeading4 = 0;
Overage overage;
do {
overage = _adjustOverageClassII(fijk, res, pentLeading4, 1);
} while (overage == NEW_FACE);
return overage;
}
/**
* Encodes a coordinate on the sphere to the corresponding icosahedral face and
* containing the squared euclidean distance to that face center.
*
* @param g The spherical coordinates to encode.
* @param face The icosahedral face containing the spherical coordinates.
* @param sqd The squared euclidean distance to its icosahedral face center.
*/
void _geoToClosestFace(const LatLng *g, int *face, double *sqd) {
Vec3d v3d;
_geoToVec3d(g, &v3d);
// determine the icosahedron face
*face = 0;
// The distance between two farthest points is 2.0, therefore the square of
// the distance between two points should always be less or equal than 4.0 .
*sqd = 5.0;
for (int f = 0; f < NUM_ICOSA_FACES; ++f) {
double sqdT = _pointSquareDist(&faceCenterPoint[f], &v3d);
if (sqdT < *sqd) {
*face = f;
*sqd = sqdT;
}
}
}