in bindings/python-compute/main.py [0:0]
def load_data(self, feature_dataset=None, pred_datasets=None, data_filter=None):
if not self.should_reload_data(feature_dataset, pred_datasets) \
and not self.should_reapply_filter(data_filter):
return
# rebuild DataManager if data sources change
if self.should_reload_data(feature_dataset, pred_datasets):
self.data_sets = {
'feature_dataset': feature_dataset,
'pred_datasets': pred_datasets
}
self.data_manager = DataManager(feature_dataset, pred_datasets)
if self.data_manager is None:
return
# rebuild PerformanceComparison and FeatureDifferentiation if data sources or filters change
self.data_filter = data_filter
self.data_manager.set_filters(filters=data_filter)
pred_df = self.data_manager.get_pred_df()
loss_df = self.data_manager.get_loss_df()
feature_df = self.data_manager.get_feature_df()
# todo: allow users to set model names
n_models = self.data_manager.get_models_meta_data()['nModels']
self.performance_comparison = PerformanceComparison(
pred_df,
loss_df,
feature_df,
uuid=feature_df[UUID_COL].values,
model_meta={'model_' + str(i): 'model_' + str(i) for i in range(n_models)}
)
self.feature_differentiation = FeatureDifferentiation(feature_df)