bindings/jupyter/notebooks/feature-list-view.ipynb (146 lines of code) (raw):

{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Feature List View\n", "\n", "## Usage" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "92fae3525cd246e4bd6bdaabca12fd98", "version_major": 2, "version_minor": 0 }, "text/plain": [ "FeatureListView(props='{\"data\": [{\"name\": \"dummy-categorical-feature\", \"type\": \"categorical\", \"domain\": [\"Alab…" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import sys, json, math\n", "from mlvis import FeatureListView\n", "from random import uniform, gauss\n", "from IPython.display import display\n", "if sys.version_info[0] < 3:\n", " import urllib2 as url\n", "else:\n", " import urllib.request as url\n", " \n", "def generate_random_steps(k):\n", " randoms = [uniform(0, 1) / 2 for i in range(0, k)]\n", " steps = [0] * (k - 1)\n", " t = 0\n", " for i in range(0, k - 1):\n", " steps[i] = t + (1 - t) * randoms[i]\n", " t = steps[i]\n", " return steps + [1]\n", "\n", "def generate_categorical_feature(states):\n", " size = len(states)\n", " distro_a = [uniform(0, 1) for i in range(0, size)] \n", " distro_b = [uniform(0, 1) for i in range(0, size)]\n", " return {\n", " 'name': 'dummy-categorical-feature',\n", " 'type': 'categorical',\n", " 'domain': list(states.values()),\n", " 'distributions': [distro_a, distro_b],\n", " 'distributionNormalized': [distro_a, distro_b],\n", " 'colors': ['#47B274', '#6F5AA7'],\n", " 'divergence': uniform(0, 1)\n", " }\n", "\n", "def generate_numerical_feature():\n", " domain_size = 100\n", " distro_a = [uniform(0, 1) for i in range(0, domain_size)]\n", " distro_b = [uniform(0, 1) for i in range(0, domain_size)]\n", " return {\n", " 'name': 'dummy-categorical-numerical',\n", " 'type': 'numerical',\n", " 'domain': generate_random_steps(domain_size),\n", " 'distributions': [distro_a, distro_b],\n", " 'distributionNormalized': [distro_a, distro_b],\n", " 'colors': ['#47B274', '#6F5AA7'],\n", " 'divergence': uniform(0, 1)\n", " }\n", "\n", "def generate_random_categorical_values(states):\n", " k = 10000\n", " values = [None] * k\n", " domain = list(states.values())\n", " size = len(states)\n", " for i in range(0, k):\n", " d = int(math.floor(uniform(0, 1) * size))\n", " values[i] = domain[d]\n", " return values\n", "\n", "def generate_raw_categorical_feature(states):\n", " return {\n", " 'name': 'dummy-raw-categorical-feature',\n", " 'type': 'categorical',\n", " 'values': [generate_random_categorical_values(states),\n", " generate_random_categorical_values(states)]\n", " }\n", "\n", "def generate_raw_numerical_feature():\n", " return {\n", " 'name': 'dummy-raw-numerical-feature',\n", " 'type': 'numerical',\n", " 'values': [\n", " [gauss(2, 0.5) for i in range(0, 2500)],\n", " [gauss(0, 1) for i in range(0, 7500)]\n", " ]\n", " }\n", "\n", "# load the US states data\n", "PREFIX = 'https://d1a3f4spazzrp4.cloudfront.net/mlvis/'\n", "response = url.urlopen(PREFIX + 'jupyter/states.json')\n", "states = json.loads(response.read().decode())\n", "\n", "# Randomly generate the data for the feature list view\n", "categorical_feature = generate_categorical_feature(states)\n", "raw_categorical_feature = generate_raw_categorical_feature(states)\n", "numerical_feature = generate_numerical_feature()\n", "raw_numerical_feature = generate_raw_numerical_feature()\n", "data = [categorical_feature, raw_categorical_feature, numerical_feature, raw_numerical_feature]\n", "\n", "feature_list_view = FeatureListView(props={\"data\": data, \"width\": 1000})\n", "\n", "display(feature_list_view) " ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.0" } }, "nbformat": 4, "nbformat_minor": 2 }