chatlearn/models/vllm/hooks/vllm_0_6_6/qwen3.py (436 lines of code) (raw):

# Adapted from # https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/qwen2/modeling_qwen2.py # Copyright 2024 The Qwen team. # Copyright 2023 The vLLM team. # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Inference-only Qwen2 model compatible with HuggingFace weights.""" # pylint: skip-file from typing import Iterable, List, Optional, Set, Tuple, Union import torch from torch import nn from transformers import Qwen3Config from vllm.attention import Attention, AttentionMetadata, AttentionType from vllm.compilation.decorators import support_torch_compile from vllm.config import CacheConfig, VllmConfig from vllm.distributed import get_pp_group, get_tensor_model_parallel_world_size from vllm.logger import init_logger from vllm.model_executor.layers.activation import SiluAndMul from vllm.model_executor.layers.layernorm import RMSNorm from vllm.model_executor.layers.linear import (MergedColumnParallelLinear, QKVParallelLinear, RowParallelLinear) from vllm.model_executor.layers.logits_processor import LogitsProcessor from vllm.model_executor.layers.pooler import Pooler, PoolingType from vllm.model_executor.layers.quantization import QuantizationConfig from vllm.model_executor.layers.rotary_embedding import get_rope from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler from vllm.model_executor.layers.vocab_parallel_embedding import ( ParallelLMHead, VocabParallelEmbedding) from vllm.model_executor.model_loader.weight_utils import ( default_weight_loader, maybe_remap_kv_scale_name) from vllm.model_executor.pooling_metadata import PoolingMetadata from vllm.model_executor.sampling_metadata import SamplingMetadata from vllm.sequence import IntermediateTensors, PoolerOutput from vllm.model_executor.models.interfaces import SupportsLoRA, SupportsPP from vllm.model_executor.models.utils import (AutoWeightsLoader, PPMissingLayer, WeightsMapper, is_pp_missing_parameter, make_empty_intermediate_tensors_factory, make_layers, maybe_prefix) logger = init_logger(__name__) class Qwen3MLP(nn.Module): def __init__( self, hidden_size: int, intermediate_size: int, hidden_act: str, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ) -> None: super().__init__() self.gate_up_proj = MergedColumnParallelLinear( hidden_size, [intermediate_size] * 2, bias=False, quant_config=quant_config, prefix=f"{prefix}.gate_up_proj", ) self.down_proj = RowParallelLinear( intermediate_size, hidden_size, bias=False, quant_config=quant_config, prefix=f"{prefix}.down_proj", ) if hidden_act != "silu": raise ValueError(f"Unsupported activation: {hidden_act}. " "Only silu is supported for now.") self.act_fn = SiluAndMul() def forward(self, x): gate_up, _ = self.gate_up_proj(x) x = self.act_fn(gate_up) x, _ = self.down_proj(x) return x class Qwen3Attention(nn.Module): def __init__(self, hidden_size: int, num_heads: int, num_kv_heads: int, max_position: int = 4096 * 32, head_dim: Optional[int] = None, rms_norm_eps: float = 1e-06, qkv_bias: bool = False, rope_theta: float = 10000, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, rope_scaling: Optional[Tuple] = None, prefix: str = "") -> None: super().__init__() self.hidden_size = hidden_size tp_size = get_tensor_model_parallel_world_size() self.total_num_heads = num_heads assert self.total_num_heads % tp_size == 0 self.num_heads = self.total_num_heads // tp_size self.total_num_kv_heads = num_kv_heads if self.total_num_kv_heads >= tp_size: # Number of KV heads is greater than TP size, so we partition # the KV heads across multiple tensor parallel GPUs. assert self.total_num_kv_heads % tp_size == 0 else: # Number of KV heads is less than TP size, so we replicate # the KV heads across multiple tensor parallel GPUs. assert tp_size % self.total_num_kv_heads == 0 self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size) self.head_dim = head_dim or hidden_size // self.total_num_heads self.q_size = self.num_heads * self.head_dim self.kv_size = self.num_kv_heads * self.head_dim self.scaling = self.head_dim**-0.5 self.rope_theta = rope_theta self.qkv_proj = QKVParallelLinear( hidden_size, self.head_dim, self.total_num_heads, self.total_num_kv_heads, bias=qkv_bias, quant_config=quant_config, prefix=f"{prefix}.qkv_proj", ) self.o_proj = RowParallelLinear( self.total_num_heads * self.head_dim, hidden_size, bias=False, quant_config=quant_config, prefix=f"{prefix}.o_proj", ) self.rotary_emb = get_rope( self.head_dim, rotary_dim=self.head_dim, max_position=max_position, base=self.rope_theta, rope_scaling=rope_scaling, ) self.attn = Attention(self.num_heads, self.head_dim, self.scaling, num_kv_heads=self.num_kv_heads, cache_config=cache_config, quant_config=quant_config, prefix=f"{prefix}.attn") self.q_norm = RMSNorm(self.head_dim, eps=rms_norm_eps) self.k_norm = RMSNorm(self.head_dim, eps=rms_norm_eps) def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, kv_cache: torch.Tensor, attn_metadata: AttentionMetadata, attn_type: str = AttentionType.DECODER, ) -> torch.Tensor: qkv, _ = self.qkv_proj(hidden_states) q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1) # Add qk-norm q_by_head = q.view(*q.shape[:-1], q.shape[-1] // self.head_dim, self.head_dim) q_by_head = self.q_norm.forward_native(q_by_head) q = q_by_head.view(q.shape) k_by_head = k.view(*k.shape[:-1], k.shape[-1] // self.head_dim, self.head_dim) k_by_head = self.k_norm.forward_native(k_by_head) k = k_by_head.view(k.shape) q, k = self.rotary_emb(positions, q, k) attn_output = self.attn(q, k, v, kv_cache, attn_metadata, attn_type=attn_type) output, _ = self.o_proj(attn_output) return output class Qwen3DecoderLayer(nn.Module): def __init__( self, config: Qwen3Config, cache_config: Optional[CacheConfig] = None, quant_config: Optional[QuantizationConfig] = None, prefix: str = "", ) -> None: super().__init__() self.hidden_size = config.hidden_size # Requires transformers > 4.32.0 rope_theta = getattr(config, "rope_theta", 1000000) rope_scaling = getattr(config, "rope_scaling", None) self.self_attn = Qwen3Attention( hidden_size=self.hidden_size, num_heads=config.num_attention_heads, max_position=config.max_position_embeddings, num_kv_heads=config.num_key_value_heads, rope_theta=rope_theta, rms_norm_eps=config.rms_norm_eps, qkv_bias=getattr(config, 'attention_bias', False), head_dim=getattr(config, 'head_dim', None), cache_config=cache_config, quant_config=quant_config, rope_scaling=rope_scaling, prefix=f"{prefix}.self_attn", ) self.mlp = Qwen3MLP( hidden_size=self.hidden_size, intermediate_size=config.intermediate_size, hidden_act=config.hidden_act, quant_config=quant_config, prefix=f"{prefix}.mlp", ) self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) # By default, Qwen2 uses causal attention as it is a decoder-only model. # You can override the HF config with `is_causal=False` to enable # bidirectional attention, which is used in some embedding models # (e.g. Alibaba-NLP/gte-Qwen2-7B-instruct) if getattr(config, "is_causal", True): self._attn_type = AttentionType.DECODER else: self._attn_type = AttentionType.ENCODER_ONLY def forward( self, positions: torch.Tensor, hidden_states: torch.Tensor, kv_cache: torch.Tensor, attn_metadata: AttentionMetadata, residual: Optional[torch.Tensor], ) -> Tuple[torch.Tensor, torch.Tensor]: # Self Attention if residual is None: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) else: hidden_states, residual = self.input_layernorm( hidden_states, residual) hidden_states = self.self_attn( positions=positions, hidden_states=hidden_states, kv_cache=kv_cache, attn_metadata=attn_metadata, attn_type=self._attn_type, ) # Fully Connected hidden_states, residual = self.post_attention_layernorm( hidden_states, residual) hidden_states = self.mlp(hidden_states) return hidden_states, residual ALL_DECODER_LAYER_TYPES = { "attention": Qwen3DecoderLayer, } @support_torch_compile class Qwen3Model(nn.Module): def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): super().__init__() config = vllm_config.model_config.hf_config cache_config = vllm_config.cache_config quant_config = vllm_config.quant_config # TODO (@robertgshaw2): see if this can be moved out if (cache_config.sliding_window is not None and hasattr(config, "max_window_layers")): raise ValueError("Sliding window for some but all layers is not " "supported. This model uses sliding window " "but `max_window_layers` = {} is less than " "`num_hidden_layers` = {}. Please open an issue " "to discuss this feature.".format( config.max_window_layers, config.num_hidden_layers, )) self.config = config self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size if get_pp_group().is_first_rank or (config.tie_word_embeddings and get_pp_group().is_last_rank): self.embed_tokens = VocabParallelEmbedding( config.vocab_size, config.hidden_size, quant_config=quant_config, prefix=f"{prefix}.embed_tokens", ) else: self.embed_tokens = PPMissingLayer() self.start_layer, self.end_layer, self.layers = make_layers( config.num_hidden_layers, lambda prefix: Qwen3DecoderLayer(config=config, cache_config=cache_config, quant_config=quant_config, prefix=f"{prefix}.layers"), prefix=f"{prefix}.layers", ) self.make_empty_intermediate_tensors = ( make_empty_intermediate_tensors_factory( ["hidden_states", "residual"], config.hidden_size)) if get_pp_group().is_last_rank: self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) else: self.norm = PPMissingLayer() def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor: return self.embed_tokens(input_ids) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, kv_caches: List[torch.Tensor], attn_metadata: AttentionMetadata, intermediate_tensors: Optional[IntermediateTensors] = None, inputs_embeds: Optional[torch.Tensor] = None, ) -> Union[torch.Tensor, IntermediateTensors]: if get_pp_group().is_first_rank: if inputs_embeds is not None: hidden_states = inputs_embeds else: hidden_states = self.get_input_embeddings(input_ids) residual = None else: assert intermediate_tensors is not None hidden_states = intermediate_tensors["hidden_states"] residual = intermediate_tensors["residual"] for i in range(self.start_layer, self.end_layer): layer = self.layers[i] hidden_states, residual = layer( positions, hidden_states, kv_caches[i - self.start_layer], attn_metadata, residual, ) if not get_pp_group().is_last_rank: return IntermediateTensors({ "hidden_states": hidden_states, "residual": residual }) hidden_states, _ = self.norm(hidden_states, residual) return hidden_states def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]) -> Set[str]: stacked_params_mapping = [ # (param_name, shard_name, shard_id) ("qkv_proj", "q_proj", "q"), ("qkv_proj", "k_proj", "k"), ("qkv_proj", "v_proj", "v"), ("gate_up_proj", "gate_proj", 0), ("gate_up_proj", "up_proj", 1), ] params_dict = dict(self.named_parameters(remove_duplicate=False)) loaded_params: Set[str] = set() for name, loaded_weight in weights: if "rotary_emb.inv_freq" in name: continue for (param_name, weight_name, shard_id) in stacked_params_mapping: if weight_name not in name: continue name = name.replace(weight_name, param_name) # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue if is_pp_missing_parameter(name, self): continue param = params_dict[name] weight_loader = param.weight_loader weight_loader(param, loaded_weight, shard_id) break else: # Skip loading extra bias for GPTQ models. if name.endswith(".bias") and name not in params_dict: continue # Remapping the name of FP8 kv-scale. name = maybe_remap_kv_scale_name(name, params_dict) if name is None: continue if is_pp_missing_parameter(name, self): continue param = params_dict[name] weight_loader = getattr(param, "weight_loader", default_weight_loader) weight_loader(param, loaded_weight) loaded_params.add(name) return loaded_params class Qwen3ForCausalLM(nn.Module, SupportsLoRA, SupportsPP): packed_modules_mapping = { "qkv_proj": [ "q_proj", "k_proj", "v_proj", ], "gate_up_proj": [ "gate_proj", "up_proj", ], } # LoRA specific attributes supported_lora_modules = [ "qkv_proj", "o_proj", "gate_up_proj", "down_proj", ] embedding_modules = {} embedding_padding_modules = [] # BitandBytes specific attributes bitsandbytes_stacked_params_mapping = { # shard_name, weight_name, index "q_proj": ("qkv_proj", 0), "k_proj": ("qkv_proj", 1), "v_proj": ("qkv_proj", 2), "gate_proj": ("gate_up_proj", 0), "up_proj": ("gate_up_proj", 1), } def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): super().__init__() config = vllm_config.model_config.hf_config quant_config = vllm_config.quant_config lora_config = vllm_config.lora_config self.config = config self.lora_config = lora_config self.quant_config = quant_config self.model = Qwen3Model(vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model")) if get_pp_group().is_last_rank: if config.tie_word_embeddings: self.lm_head = self.model.embed_tokens else: self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size, quant_config=quant_config, prefix=maybe_prefix( prefix, "lm_head")) else: self.lm_head = PPMissingLayer() self.logits_processor = LogitsProcessor(config.vocab_size) self.sampler = get_sampler() self.make_empty_intermediate_tensors = ( self.model.make_empty_intermediate_tensors) def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor: return self.model.get_input_embeddings(input_ids) def forward( self, input_ids: torch.Tensor, positions: torch.Tensor, kv_caches: List[torch.Tensor], attn_metadata: AttentionMetadata, intermediate_tensors: Optional[IntermediateTensors] = None, inputs_embeds: Optional[torch.Tensor] = None, ) -> Union[torch.Tensor, IntermediateTensors]: hidden_states = self.model(input_ids, positions, kv_caches, attn_metadata, intermediate_tensors, inputs_embeds) return hidden_states def compute_logits( self, hidden_states: torch.Tensor, sampling_metadata: SamplingMetadata, ) -> Optional[torch.Tensor]: logits = self.logits_processor(self.lm_head, hidden_states, sampling_metadata) return logits def sample( self, logits: torch.Tensor, sampling_metadata: SamplingMetadata, ) -> Optional[SamplerOutput]: next_tokens = self.sampler(logits, sampling_metadata) return next_tokens def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]) -> Set[str]: loader = AutoWeightsLoader( self, skip_prefixes=(["lm_head."] if self.config.tie_word_embeddings else None), ) return loader.load_weights(weights)