core/maxframe/learn/contrib/llm/multi_modal.py (24 lines of code) (raw):
# Copyright 1999-2025 Alibaba Group Holding Ltd.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Dict
from ....dataframe.core import DATAFRAME_TYPE, SERIES_TYPE
from .core import LLM
class MultiModalLLM(LLM):
def generate(
self,
data,
prompt_template: Dict[str, Any],
params: Dict[str, Any] = None,
):
raise NotImplementedError
def generate(
data,
model: MultiModalLLM,
prompt_template: Dict[str, Any],
params: Dict[str, Any] = None,
):
"""
Generate text with multi model llm based on given data and prompt template.
Parameters
----------
data : DataFrame or Series
Input data used for generation. Can be maxframe DataFrame, Series that contain text to be processed.
model : MultiModalLLM
Language model instance support **MultiModal** inputs used for text generation.
prompt_template : List[Dict[str, List[Dict[str, str]]]]
List of message with column names as placeholders. Each message contains a role and content. Content is a list of dict, each dict contains a text or image, the value can reference column data from input.
Here is an example of prompt template.
.. code-block:: python
[
{
"role": "<role>", # e.g. "user" or "assistant"
"content": [
{
# At least one of these fields is required
"image": "<image_data_url>", # optional
"text": "<prompt_text_template>" # optional
},
...
]
}
]
Where:
- ``text`` can be a Python format string using column names from input data as parameters (e.g. ``"{column_name}"``)
- ``image`` should be a DataURL string following `RFC2397 <https://en.wikipedia.org/wiki/Data_URI_scheme>`_ standard with format.
.. code-block:: none
data:<mime_type>[;base64],<column_name>
params : Dict[str, Any], optional
Additional parameters for generation configuration, by default None.
Can include settings like temperature, max_tokens, etc.
Returns
-------
DataFrame
Generated text raw response and success status. If the success is False, the generated text will return the
error message.
Notes
-----
- The ``api_key_resource`` parameter should reference a text file resource in MaxCompute that contains only your DashScope API key.
- Using DashScope services requires enabling public network access for your MaxCompute project. This can be configured through the MaxCompute console by `enabling the Internet access feature <https://help.aliyun.com/zh/maxcompute/user-guide/network-connection-process>`_ for your project. Without this configuration, the API calls to DashScope will fail due to network connectivity issues.
Examples
--------
You can initialize a DashScope multi-modal model (such as qwen-vl-max) by providing a model name and an ``api_key_resource``.
The ``api_key_resource`` is a MaxCompute resource name that points to a text file containing a `DashScope <https://dashscope.aliyun.com/>`_ API key.
>>> from maxframe.learn.contrib.llm.models.dashscope import DashScopeMultiModalLLM
>>> import maxframe.dataframe as md
>>>
>>> model = DashScopeMultiModalLLM(
... name="qwen-vl-max",
... api_key_resource="<api-key-resource-name>"
... )
We use Data Url Schema to provide multi modal input in prompt template, here is an example to fill in the image from table.
Assuming you have a MaxCompute table with two columns: ``image_id`` (as the index) and ``encoded_image_data_base64`` (containing Base64 encoded image data),
you can construct a prompt message template as follows:
>>> df = md.read_odps_table("image_content", index_col="image_id")
>>> prompt_template = [
... {
... "role": "user",
... "content": [
... {
... "image": "_image_data_base64",
... },
... {
... "text": "Analyze this image in detail",
... },
... ],
... },
... ]
>>> result = model.generate(df, prompt_template)
>>> result.execute()
"""
if not isinstance(data, DATAFRAME_TYPE) and not isinstance(data, SERIES_TYPE):
raise ValueError("data must be a maxframe dataframe or series object")
if not isinstance(model, MultiModalLLM):
raise ValueError("model must be a MultiModalLLM object")
params = params if params is not None else dict()
model.validate_params(params)
return model.generate(data, prompt_template, params)