core/maxframe/learn/contrib/llm/multi_modal.py (24 lines of code) (raw):

# Copyright 1999-2025 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict from ....dataframe.core import DATAFRAME_TYPE, SERIES_TYPE from .core import LLM class MultiModalLLM(LLM): def generate( self, data, prompt_template: Dict[str, Any], params: Dict[str, Any] = None, ): raise NotImplementedError def generate( data, model: MultiModalLLM, prompt_template: Dict[str, Any], params: Dict[str, Any] = None, ): """ Generate text with multi model llm based on given data and prompt template. Parameters ---------- data : DataFrame or Series Input data used for generation. Can be maxframe DataFrame, Series that contain text to be processed. model : MultiModalLLM Language model instance support **MultiModal** inputs used for text generation. prompt_template : List[Dict[str, List[Dict[str, str]]]] List of message with column names as placeholders. Each message contains a role and content. Content is a list of dict, each dict contains a text or image, the value can reference column data from input. Here is an example of prompt template. .. code-block:: python [ { "role": "<role>", # e.g. "user" or "assistant" "content": [ { # At least one of these fields is required "image": "<image_data_url>", # optional "text": "<prompt_text_template>" # optional }, ... ] } ] Where: - ``text`` can be a Python format string using column names from input data as parameters (e.g. ``"{column_name}"``) - ``image`` should be a DataURL string following `RFC2397 <https://en.wikipedia.org/wiki/Data_URI_scheme>`_ standard with format. .. code-block:: none data:<mime_type>[;base64],<column_name> params : Dict[str, Any], optional Additional parameters for generation configuration, by default None. Can include settings like temperature, max_tokens, etc. Returns ------- DataFrame Generated text raw response and success status. If the success is False, the generated text will return the error message. Notes ----- - The ``api_key_resource`` parameter should reference a text file resource in MaxCompute that contains only your DashScope API key. - Using DashScope services requires enabling public network access for your MaxCompute project. This can be configured through the MaxCompute console by `enabling the Internet access feature <https://help.aliyun.com/zh/maxcompute/user-guide/network-connection-process>`_ for your project. Without this configuration, the API calls to DashScope will fail due to network connectivity issues. Examples -------- You can initialize a DashScope multi-modal model (such as qwen-vl-max) by providing a model name and an ``api_key_resource``. The ``api_key_resource`` is a MaxCompute resource name that points to a text file containing a `DashScope <https://dashscope.aliyun.com/>`_ API key. >>> from maxframe.learn.contrib.llm.models.dashscope import DashScopeMultiModalLLM >>> import maxframe.dataframe as md >>> >>> model = DashScopeMultiModalLLM( ... name="qwen-vl-max", ... api_key_resource="<api-key-resource-name>" ... ) We use Data Url Schema to provide multi modal input in prompt template, here is an example to fill in the image from table. Assuming you have a MaxCompute table with two columns: ``image_id`` (as the index) and ``encoded_image_data_base64`` (containing Base64 encoded image data), you can construct a prompt message template as follows: >>> df = md.read_odps_table("image_content", index_col="image_id") >>> prompt_template = [ ... { ... "role": "user", ... "content": [ ... { ... "image": "_image_data_base64", ... }, ... { ... "text": "Analyze this image in detail", ... }, ... ], ... }, ... ] >>> result = model.generate(df, prompt_template) >>> result.execute() """ if not isinstance(data, DATAFRAME_TYPE) and not isinstance(data, SERIES_TYPE): raise ValueError("data must be a maxframe dataframe or series object") if not isinstance(model, MultiModalLLM): raise ValueError("model must be a MultiModalLLM object") params = params if params is not None else dict() model.validate_params(params) return model.generate(data, prompt_template, params)