aws-deepracer / aws-deepracer-sensor-fusion-pkg
Conditional Complexity

The distribution of complexity of units (measured with McCabe index).

Intro
  • Conditional complexity (also called cyclomatic complexity) is a term used to measure the complexity of software. The term refers to the number of possible paths through a program function. A higher value ofter means higher maintenance and testing costs (infosecinstitute.com).
  • Conditional complexity is calculated by counting all conditions in the program that can affect the execution path (e.g. if statement, loops, switches, and/or operators, try and catch blocks...).
  • Conditional complexity is measured at the unit level (methods, functions...).
  • Units are classified in four categories based on the measured McCabe index: 1-5 (simple units), 6-10 (medium complex units), 11-25 (complex units), 26+ (very complex units).
Learn more...
Conditional Complexity Overall
  • There are 20 units with 438 lines of code in units (67.9% of code).
    • 0 very complex units (0 lines of code)
    • 0 complex units (0 lines of code)
    • 1 medium complex units (44 lines of code)
    • 4 simple units (133 lines of code)
    • 15 very simple units (261 lines of code)
0% | 0% | 10% | 30% | 59%
Legend:
51+
26-50
11-25
6-10
1-5
Alternative Visuals
Conditional Complexity per Extension
51+
26-50
11-25
6-10
1-5
cpp0% | 0% | 10% | 31% | 58%
py0% | 0% | 0% | 0% | 100%
Conditional Complexity per Logical Component
primary logical decomposition
51+
26-50
11-25
6-10
1-5
src0% | 0% | 10% | 31% | 58%
launch0% | 0% | 0% | 0% | 100%
Most Complex Units
Top 20 most complex units
Unit# linesMcCabe index# params
void setSensorConfigurationFromFile()
in sensor_fusion_pkg/src/sensor_fusion_node.cpp
44 11 2
void lidarCB()
in sensor_fusion_pkg/src/sensor_fusion_node.cpp
45 7 1
void setLidarConfigCallback()
in sensor_fusion_pkg/src/sensor_fusion_node.cpp
36 7 3
void statusCheckCallback()
in sensor_fusion_pkg/src/sensor_fusion_node.cpp
28 6 3
void writeSensorConfigJSON()
in sensor_fusion_pkg/src/sensor_fusion_node.cpp
24 6 2
void LidarOverlay::loadLidarOverlayCache()
in sensor_fusion_pkg/src/lidar_overlay.cpp
18 5 1
void displayCB()
in sensor_fusion_pkg/src/sensor_fusion_node.cpp
27 5 1
std::vector binarySectorizeLidarData()
in sensor_fusion_pkg/src/sensor_fusion_node.cpp
11 5 3
std::vector linspace()
in sensor_fusion_pkg/src/utility.cpp
17 4 3
std::vector interp()
in sensor_fusion_pkg/src/utility.cpp
20 4 3
void cameraCB()
in sensor_fusion_pkg/src/sensor_fusion_node.cpp
21 3 1
cv::Mat LidarOverlay::overlayLidarDataOnImage()
in sensor_fusion_pkg/src/lidar_overlay.cpp
14 2 2
void LidarOverlay::drawSectorSeparatorLinesOnImage()
in sensor_fusion_pkg/src/lidar_overlay.cpp
9 2 1
def generate_launch_description()
in sensor_fusion_pkg/launch/sensor_fusion_launch.py
9 1 0
void LidarOverlay::init()
in sensor_fusion_pkg/src/lidar_overlay.cpp
9 1 3
void LidarOverlay::createFillCoordinates()
in sensor_fusion_pkg/src/lidar_overlay.cpp
61 1 0
void createDefaultSensorConfiguration()
in sensor_fusion_pkg/src/sensor_fusion_node.cpp
22 1 0
int main()
in sensor_fusion_pkg/src/sensor_fusion_node.cpp
10 1 2
bool checkFile()
in sensor_fusion_pkg/src/utility.cpp
5 1 1
void writeJSONToFile()
in sensor_fusion_pkg/src/utility.cpp
8 1 2